

Introduction to Machine Learning for Family Research

NCFR Workshop

Xiaoran Sun Departments of Pediatrics & Communication, Stanford University Stanford Data Science Scholars Program

Without Machine Learning

"Maze" by Danny Glix (2006)

Workshop Outline

- Background/Motivation
- What is machine learning?
- Apply machine learning in family research: An example
- Interactive exercise: Brainstorm about how you can use machine learning in your research
- A demonstration in Jupyter notebook (Python)

Questions are welcome anytime in chat!

Feedback would be very much appreciated!!

https://stanforduniversity.qualtrics.com/jfe/form/SV_9EK6XvsgUzHWzZz

Background/Motivation

- In this digital era, with booming "big" data and access to computational power, the utility of machine learning (ML) methods is gaining attention in social sciences
- Including in developmental science (e.g., Brandmaier et al., 0217; Brick et al., 2017; Puterman et al., 2020; Rosenberg et al., 2018 ; Whelan et al., 2014), Such as for
 - processing raw big data (e.g., video and image; Gilmore et al., 2016)
 - predicting future developmental outcomes (e.g., adolescent alcohol misuse, mortality; Whelan et al., 2014; Puterman et al., 2020)
 - selecting important features from large-scale data for optimal study design (Brick et al., 2017)
 - discovering developmental patterns (e.g., growth curve for terminal wellbeing; Brandmaier et al., 2017)

Background/Motivation

- ML still rarely seen in family studies, but has been emerging recently
 - e.g., The Fragile Families Challenge (Salganik et al., 2020)
 - "Applications of Artificial Intelligence Methodologies to Behavioral and Social Science" (Robila & Robila, 2020, JCFS)
 - "Adolescent Family Experiences Predict Young Adult Educational Attainment: A Data-Based Cross-Study Synthesis With Machine Learning" (Sun, Ram, & McHale, 2020)
 - And lot more research to come...

What is Machine Learning?

- A brief definition (by MIT Technology Review):
 - ML algorithms
 - find and apply **patterns** in data;
 - use statistics to find patterns in massive amounts of data
- Different from traditional hypothesis-testing methods in family research, ML is
 - data-driven (v. hypothesis-driven), and
 - exploratory (v. confirmatory)

What is Machine Learning?

- Basic types of ML:
 - supervised learning
 - unsupervised learning (e.g., cluster analysis)
 - reinforcement learning (e.g., basis of Google AlphaGo)

Supervised Learning Approach

- Protocol: Given data, predictors and an outcome variable, build predictive models that maximize prediction performance (e.g., accuracy, minimal error).
- Data-driven, exploratory; typically no pre-determined associations
 - Allow a large number of predictors
 - (Some algorithms) Allow nonlinearities and interactions

Without Machine Learning

With Machine Learning

Molnar, Christoph (2019).

Supervised Learning Approach

- Protocol: Given data, predictors and an outcome variable, build predictive models that maximize prediction performance (e.g., accuracy, minimal error).
- Data-driven, exploratory; typically no pre-determined associations
 - Allow a large number of predictors
 - (Some algorithms) Allow nonlinearities and interactions
- "Hold-out" data, or cross-validation: test a model's prediction performance with "unknown" cases
- Regularization: prevents over-fitting

- The predicted outcome can be binary/categorical, or continuous variable
- Algorithms can serve as classification, or regression
- Some commonly used algorithms:
 - Regularized logistic regression; Ridge/Lasso regression
 - Linear discriminant analysis
 - Decision trees/Classification and regression trees
 - Support vector machine

•

. . .

• Ensemble methods, such as random forests

• Regularization: For example, L2 cost function for regularized logistic regression

$$\widehat{\boldsymbol{\beta}} = \min_{\boldsymbol{\beta}} - LL(\boldsymbol{\beta}; \boldsymbol{y}, \boldsymbol{X}) + \lambda R(\boldsymbol{\beta}).$$

$$R(\boldsymbol{\beta}) = \frac{1}{2} \| \boldsymbol{\beta} \|_2^2 = \frac{1}{2} \sum_{i=0}^n \beta_i^2,$$

• especially important to exploratory analysis

- Random forests: Ensemble of decision trees
- "the wisdom of the crowd"

Supervised Learning Approach

- Beyond predicting, many additional useful functions, e.g.
 - Feature importance & Feature selection: Select the most important predictors of the outcome
 - **Partial dependence plots (PDP):** Show the relation between one or more predictors and the predicted outcome, holding other predictors constant

Supervised Learning Approach: Analyses

- Very handy to run nowadays, with easy-to-implement packages and modules
- Examples widely used:
 - Python 'scikit-learn'
 - R 'caret'

ML for Family Research

- Family systems:
 - are complex
 - include numerous factors to examine, such as
 - multiple family relationships: mother-child, father-child, inter-parental, sibling, intergenerational, ...
 - multiple aspects of relationships: conflict, warmth, autonomy granting, time, ...
 - multiple categories of resources and contexts: education, income, public assistance, employment status, job prestige, heath-related behaviors, sociocultural context, schools and peers, ...
 - there could also be interactions among these factors to be explored
- We are trying really hard to be hypothesis-driven, but theory does not necessarily grant us specific hypotheses targeted at specific variables.

ML for Family Research

- ML can be used for:
 - Taking together a comprehensive set of family predictors, to predict an important family or developmental outcome:
 - And evaluate prediction performance of the set of predictors
 - Selecting the most important family factors among these predictors
 - Exploring interaction patterns

ML for Family Research: An Example

• Sun, X., Ram, N., & McHale, S. M. (2020). Adolescent family experiences predict young adult educational attainment: A data-based cross-study synthesis with machine learning. *Journal of Child and Family Studies, 29*, 2770-2785.

Using high-dimensional, large-scale data to synthesize family experiences as predictors of achievement

Nationally representative, large sample ($\sim N = 6,000$ for public dataset; Wave 1-5):

Measures a variety domains of development (including family experiences and academic/educational achievement) across adolescence & young adulthood

53 Family Experience Variables (Wave I; 1994-1995; Grade 7-12) Predict: Educational Attainment (College Enrollment & Graduation; Wave IV; 2008-09)

Category	Constructs	Category	Constructs		
Family and adolescent	Resident mother/father presence	Parental involvement with	Mother/Father involvement with		
demographic characteristics	Resident with two biological	education	schoolwork (3-item)		
	parents		Parent in parent-teacher		
	Household size		association		
	Number of siblings		Parent in school fund-raising		
	Parent age		Parent met teachers		
	Birth order		Mother/Father educational		
	Biological sex		expectations (2-item)		
	Adolescent age	Family sociocultural	Mother/Father nativity		
Family socioeconomic	Mother/Father education levels	characteristics	Parent religiosity (2-item)		
characteristics	Mother/Father occupational		English as home language		
	prestige		Adolescent nativity		
	Family income (log)		Adolescent race/ethnicity		
	Parent receiving public assistance	Family health resources and	Parent health		
	Family receive welfare (3-item)	behaviors	Parent smoking		
	Parent economic hardship		Mother/Father alcoholic		
Family and parent-adolescent	Family social support (4-item)		Mother/Father obese		
relationship characteristics	Shared dinner with parents		Mother/Father disabled		
	Intergenerational closure		Smoker(s) in household		
	Mother/father-adolescent		Illegal drugs in household		
	relationship quality (5-item)		Family access to medical care		
	Mother/father-adolescent shared				
	activities (10-item)				
	Parental control (7-item)				
	Mother/father supervision (3-item)				

Using high-dimensional, large-scale data to synthesize family experiences as predictors of achievement

RQ1: **How accurately** can a comprehensive set of adolescent family experiences predict young adult educational attainment?

RQ2: Which family experience factors are **key predictors** of young adult educational attainment?

RQ3: What complex patterns, including **nonlinearities and interactions** involving this set of family factors, merit further examination?

Method: Machine Learning Approach

Algorithms: Regularized logistic regression; Random forests

[RQ1] Training and testing: stratified 5-fold nested cross-validation

[*RQ2*] Feature selection: Feature importance & Recursive feature elimination

[RQ3] Nonlinearity and interactions: Partial dependence plots

Model Training & Testing

- Model training—model tuning
 - Regularized logistic regression: λ
 - Random forest classifier: combination of number of trees and maximum depth
 - Finding parameters for highest accuracy
- Model testing: Prediction performance
 - Accuracy
 - AUC (Area under ROC curve)
- Nested cross-validation
 - Outer loop– model training & testing (5-fold)
 - Inner loop– model tuning (5-fold)

An illustration of nested 5-fold cross-validation implemented in this study (Figure crafting in

reference to Raschka, 2013-2019).

Feature Selection

- Recursive feature elimination:
 - Recursively eliminate the least important feature, check reduction in prediction accuracy
 - Using the outer 5-fold loop for cross-validation
- Follow up with partial dependence plots
 - For random forest model interpretation
 - 2D: main effects
 - 3D: two-way interactions

RQ1: **How accurately** can a comprehensive set of adolescent family experiences predict young adult educational attainment?

	Regularized logistic regression			Random forests			
	λ	Accuracy	AUC	Maximum depth	No. of trees	Accuracy	AUC
Predicting college graduation							
CV1	50	79.58%	0.8421	17	700	77.67%	0.8287
CV2	500	78.51%	0.8271	15	700	78.19%	0.8272
CV3	10	81.46%	0.8627	18	800	82.21%	0.8561
CV4	10	77.98%	0.8386	11	200	78.71%	0.8255
CV5	10	77.99%	0.8193	11	100	78.56%	0.8070
Mean	-	79.10%	0.8379	-	-	79.07%	0.8289

Note. CV = Cross-validation (outer loop).

Chance level of accuracy = 55.62% for college graduation. Chance level of AUC = 0.50.

RQ2: Which family experience factors are **key predictors** of young adult educational attainment?

RQ2: Which family experience factors are **key predictors** of young adult educational attainment?

RQ3: What complex patterns, including **nonlinearities and interactions** involving this set of family factors, merit further examination?

https://github.com/xiaoransun/ML.family.edu.AddHealth

Study Summary

- Utility of machine learning approach in research on family and youth development outcomes
 - Reveal predictive power with a (relatively) large set of family factors
 - Reveal important factors for particular development outcomes
 - Reveal nonlinear & interaction effects that deserve further examination
- Family experiences in adolescence predict young adult educational achievement
 - 53 adolescent adolescent family features predicted college graduation with ${\sim}79\%$ accuracy
 - Key family experiences identified in predicting educational outcomes
 - Nonlinear (e.g., activation point) and interaction effects of family experiences revealed

Machine Learning Approach

Traditional Statistical Approaches (Especially Hypothesis-Testing)

ML for Family Research: Brainstorming

- Take 5~10 minutes, to think about these questions:
 - The research questions you are interested in answering
 - Don't hesitate to go big picture!
 - The dataset that you think can answer these questions
 - okay if you are not entirely sure
 - How ML may apply to answer your questions

Feel free to type in the chat box, or unmute yourself and speak up!

Feedback would be very much appreciated!! https://stanforduniversity.qualtrics.com/jfe/form/SV_9EK6XvsgUzHWzZz

ML for Family Research: Brainstorming

- Principles:
 - No thoughts or questions are "dumb", or "too bold"
 - Please be constructive and non-judgmental in providing thoughts to one another

ML for Family Research: Demo

- Use 'scikit-learn' in Python, with the Jupyter notebook
- Data: Add Health family experience predictors (X) + college graduation (y)